Cut-off Grade The Impact of Getting it Right

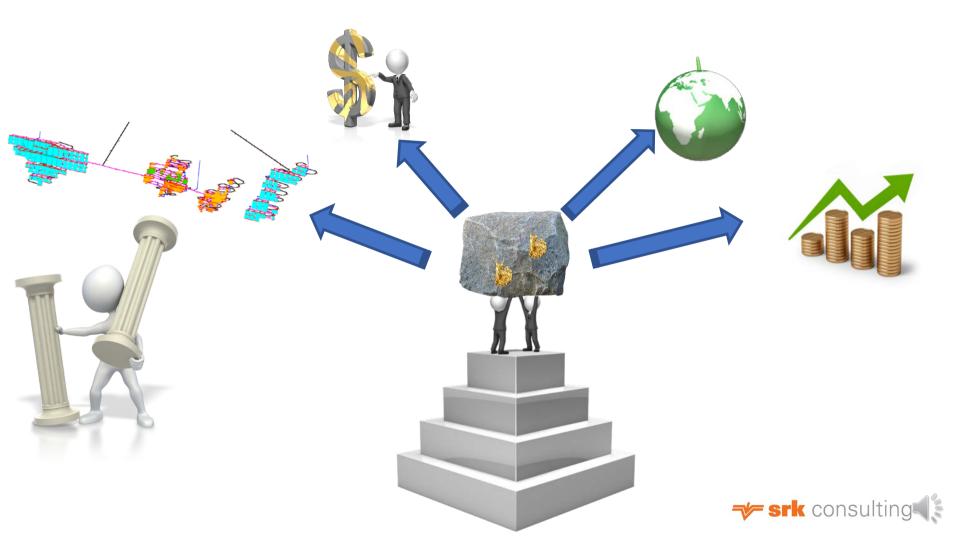
Presentation

Prepared for:

CIM 2019 Convention, Montreal, QC

Prepared by:

Gary Poxleitner, PEng, PMP, Principal Consultant (Mining) Joe Rowland, MSc, Consultant (Mining)



Talking Points

- Cut-off Grade (COG) Calculation
- Inputs/Modifying Factors into COG Calculation
- Effects of chosen inputs into the COG
- Industry wide Survey Best Practices
- Corporate Objective for COG Determination
 - Value (NPV, IRR)
 - Other Considerations
- Provide a Case Study Example
- Incremental Materials

"Every tonne mined as ore pays for itself and (generates the greatest value and meets your corporate objectives)."

Corporate Objectives

Break-Even COG – is different

Break-Even COG

BECOG =

The grade at which revenue obtained is equal to the cost to produce that revenue.

Upstream Costs

Revenue

Cut–off Grade

Cos

COG =

<u>Mining Costs (+Sustaining) + Process Costs + G&A Costs</u> Recovery x (Metal Price – Refining Costs – Royalties)

Revenue

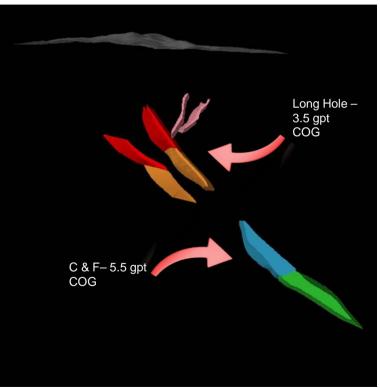
 $COG = \frac{Costs}{Revenue} = \frac{\$102.00/t}{\$34.00/t}$

Au Value (1g per tonne)			
Description	Unit	Value	Total
Spot Price	\$/g	\$40/g	\$40.00/t
Payable	99%	\$0.40/g	\$39.60/t
Treatment/Refinery	\$1.60	\$1.60/g	38.00/t
Royalty	2.6%	\$1.00/t	37.00/t
Transport	\$1/g	\$1.00/t	36.00/t
Mill Recovery	94.5%	\$2.00/t	34.00/t

Cost (1 tonne of ore)			
Description	Unit	Total	
Mining	\$/t	\$42.00/t	
Mill	\$/t	\$20.00/t	
Administration(G&A)	\$/t	\$25.00/t	
Sustaining	\$/t	\$15.00/t	
Total Opex + Sustaining	\$/t	\$102.00/t	
COG – Report - Mill Feed (Head Grade)		3.0 (Au gpt)	
Dilution	%	10%	
COG –Insitu- Mine Design)		3.3 Au gpt	

What to Include in a COG

CIM guidance – "reasonable prospects" (Resources) •


Implies a judgment call by the QP in respect of the technical and economic factors likely to influence the prospect of eventual economic extraction •

The basis for determining "reasonable prospects" needs to be clearly stated.

Mining Method and Zone Specific COG

In some circumstances, a single COG applied to the full deposit may result in over generalization that ultimately impacts value by removing profitable material or subsidizing low value zones.

May require separate COG for:

- Different Mine Zones
- Geo-Metallurgical Zones
- Operational Aspects Mining Methods

<u>Revenue</u>

Metal Price (\$)	\checkmark		
Mill Recovery (%) (Fixed)	\checkmark		100%
Payable Metal (%)		×	
Treatment and Refinery (\$)		×	
Transportation (\$)		\times	
Royalties (%)		×	
Mill Recovery (Variable)		X	

Upstream Cost		
Mining Cost	\checkmark	
Milling Cost	\checkmark	100%
G&A		×
Dilution		×
Sustaining Capital		×
Corporate G&A		×
Profit Margin		×
Project Capital		×

<u>Revenue</u>

Metal Price (\$)	\checkmark	
Mill Recovery (%) (Fixed)	\checkmark	
Payable Metal (%)	\checkmark	85%
Treatment and Refinery (\$)		×
Transportation (\$)		×
Royalties (%)		×
Mill Recovery (Variable)		×

Upstream Cost			
Mining Cost	\checkmark		
Milling Cost	\checkmark		
G&A	\checkmark		90%
Dilution		\times	
Sustaining Capital		\times	
Corporate G&A		X	
Profit Margin		\times	
Project Capital		\times	

80%

Х

X

X

<u>Revenue</u>

- Metal Price (\$) Mill Recovery (%) (Fixed) Payable Metal (%)
- Treatment and Refinery (\$)
- Transportation (\$)
- Royalties (%)
- Mill Recovery (Variable)

Upstream Cost			
Mining Cost	\checkmark		
Milling Cost	\checkmark		
G&A	\checkmark		
Dilution	\checkmark		70%
Sustaining Capital		\times	
Corporate G&A		\times	
Profit Margin		\times	
Project Capital		×	

<u>Revenue</u>

Metal Price (\$)✓Mill Recovery (%) (Fixed)✓Payable Metal (%)✓Treatment and Refinery (\$)✓Transportation (\$)✓Royalties (%)×Mill Recovery (Variable)×

Upstream Cost		
Mining Cost	\checkmark	
Milling Cost	\checkmark	
G&A	\checkmark	
Dilution	\checkmark	
Sustaining Capital	\checkmark	55%
Corporate G&A	×	<
Profit Margin	×	<
Project Capital	×	<

📌 srk consulting

<u>Revenue</u>

Metal Price (\$)✓Mill Recovery (%) (Fixed)✓Payable Metal (%)✓Treatment and Refinery (\$)✓Transportation (\$)✓Royalties (%)✓Mill Recovery (Variable)✓

75%

Upstream Cost		
Mining Cost	\checkmark	
Milling Cost	\checkmark	
G&A	\checkmark	
Dilution	\checkmark	
Sustaining Capital	\checkmark	
Corporate G&A	\checkmark	25%
Profit Margin	×	<
Project Capital	×	<

📌 srk consulting

<u>Revenue</u>

Metal Price (\$)✓Mill Recovery (%) (Fixed)✓Payable Metal (%)✓Treatment and Refinery (\$)✓Transportation (\$)✓Royalties (%)✓Mill Recovery (Variable)✓

20%

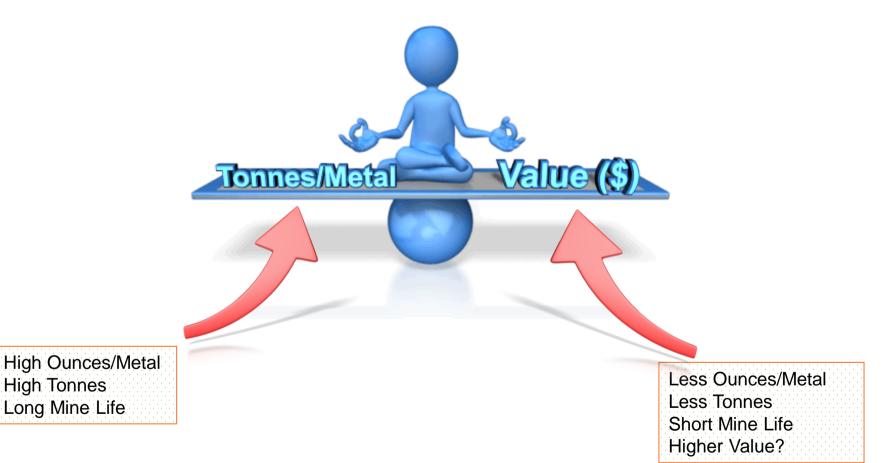
<u>Upstream Cost</u>		
Mining Cost	\checkmark	
Milling Cost	\checkmark	
G&A	\checkmark	
Dilution	\checkmark	
Sustaining Capital	\checkmark	
Corporate G&A	\checkmark	
Profit Margin	\checkmark	10%
Project Capital		×

<u>Revenue</u>

Metal Price (\$)Image: Constraint of the second second

20%

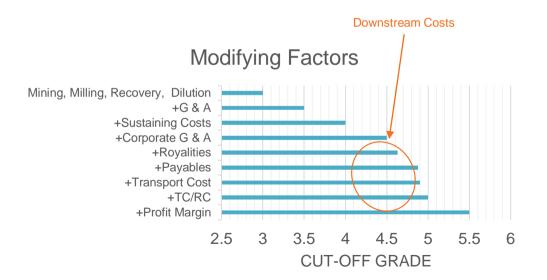
<u>Upstream Cost</u>		
Mining Cost	\checkmark	
Milling Cost	\checkmark	
G&A	\checkmark	
Dilution	\checkmark	
Sustaining Capital	\checkmark	
Corporate G&A	\checkmark	
Profit Margin	\checkmark	
Project Capital	\checkmark	10%


Industry Best Practice

Revenue

Metal Price Mill Recovery (%) Payable Metal (%) Treatment and Refinery Transportation Royalties

Mill Recovery (Variable)


Upstream Cost Mining Cost Milling Cost G&A Dilution Sustaining Capital Corporate G&X **Profit Margin Project Capital** ...reflect cashflow

F

Case Study

 Created various COG scenarios by including and excluding common modifying factors.

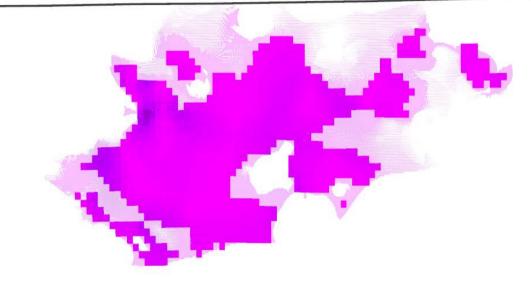
Modifying Factors	Units	Value
Metal Price	USD/oz	1,250
Payable Metal	%	99
Treatment & Refining	USD/oz	1.30
Transportation	USD/oz	4.00
Royalty	%	5
Mill Recovery	%	92
Mining Cost	\$/t	80
Milling Cost	\$/t	27
G & A	\$/t	25
Corporate G & A	\$/t	2
Sustaining Capital	\$/t	15
Profit Margin	\$/t	15
Dilution	%	15

Case Study

Modifying Factors	COG Scenario
Profit Margin	5.50
Downstream Costs	5.00
Corporate G & A	4.50
Sustaining Costs	4.00
G & A	3.50
Dilution	3.00

Parameter	Value
Level Spacing	25 m
Strike Length	20 m
Minimum Width	3 m
Minimum Dip	55°

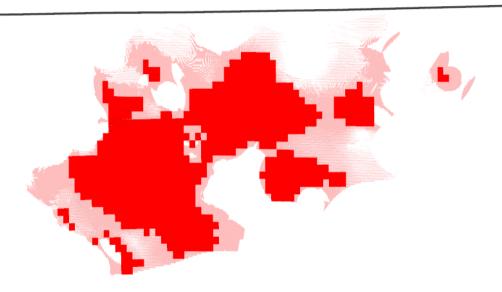
lame	Group	 Use 	Block model	Geometry	Cutoff	Output	Post processir	ig Ri	sk Resul	ts Prog	gress		
 Group: CO 	G REV02		Orientation an	d region		Change of	ientation						
3.00 GT	COG REV02	\checkmark				Stope of	lentauon						
3.50 GT	COG REV02	\checkmark	Length and he	light			Method:	Verti	cal 🔻				
4.00 GT	COG REV02	\checkmark	Width and pilla	ar width		Stope or	ientation plane:	YZ	~				
4.50 GT	COG REV02	\checkmark	Side ratio				Dip convention:		narent din	(0)	True dip		
5.00 GT	COG REV02	\checkmark				Rota		0.4	aparane ap		rrac ap		
5.50 GT	COG REV02	\checkmark	Dilution										
			Strike and dip			Fir	st rotation axis:	x		Angle:			
			Refinement (o	ptional)		Seco	nd rotation axis:	Y	\sim	Angle:	0		
			Narrow ore (o	ptional)		Thi	rd rotation axis:	Z	~	Angle:	320		
			Development	shapes (opti	onal)	Optimiza	tion region						
			Sub shapes (o	ptional)		X: 2720	39.2 X Ex	tent:	615.9				
			Advanced par	ameters (op	tional)	Y: 2327	270.2 Y Ex	tent:	2449				
			Structure wire	frame (optio	onal)	Z: 1900	Z Ex	tent:	920				
			Custom frame	and from Hore	-0	Def	ault to model lim	ts	Default t	to prototy	ype	View	
			: Custom frame	work (option	101)	Define	region from grad	le shell		Define re	eaion from	n dipping box	
						Block m	odel field: AU		-			gin X value New extent on X: New extent on X value Rota gin Y value New extent on Y: New extent on Y value Rota	
						Value:	3					gin Z value New extent on Z: New extent on Z value Rota	
							G	et regi	n				


🔫 srk consulting

Mining, Milling, Recovery, Dilution = 3.0 gpt

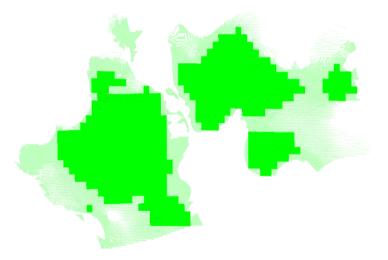
<u>COG 3.0 g/t</u> Total Tonnes = 6.9MAverage Grade = 4.52 g/t Production Rate = 2400 tpd

COG	Tonnes	Vertical Metres	tpd
3.00	6,901,787	775	2,400
3.50	5,116,866	750	1,800
4.00	3,915,709	675	1,600
4.50	3,140,989	625	1,400
5.00	2,095,061	550	1,000
5.50	1,396,578	475	800



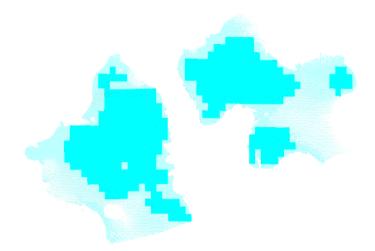
G & A = 3.5 gpt

<u>COG 3.5 gpt</u> Total Tonnes = 5.0M Average Grade = 4.95 g/t Production Rate = 1800 tpd


tpd	Vertical Metres	Tonnes	COG
2,400	775	6,901,787	3.00
1,800	750	5,116,866	3.50
1,600	675	3,915,709	4.00
1,400	625	3,140,989	4.50
1,000	550	2,095,061	5.00
800	475	1,396,578	5.50

Sustaining Capital = 4.0 gpt

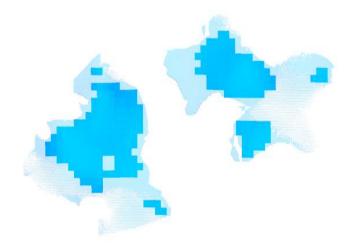
<u>COG 4.0 gpt</u> Total Tonnes = 4.0M Average Grade = 5.34 g/t Production Rate = 1600 tpd



COG	Tonnes	Vertical	tpd
00	Tonnes	Metres	ւթս
3.00	6,901,787	775	2,400
3.50	5,116,866	750	1,800
4.00	3,915,709	675	1,600
4.50	3,140,989	625	1,400
5.00	2,095,061	550	1,000
5.50	1,396,578	475	800

Corporate G & A = 4.5 gpt

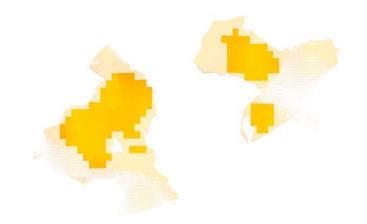
<u>COG 4.5 gpt</u> Total Tonnes = 3.0M Average Grade = 5.61 g/t Production Rate = 1400 tpd



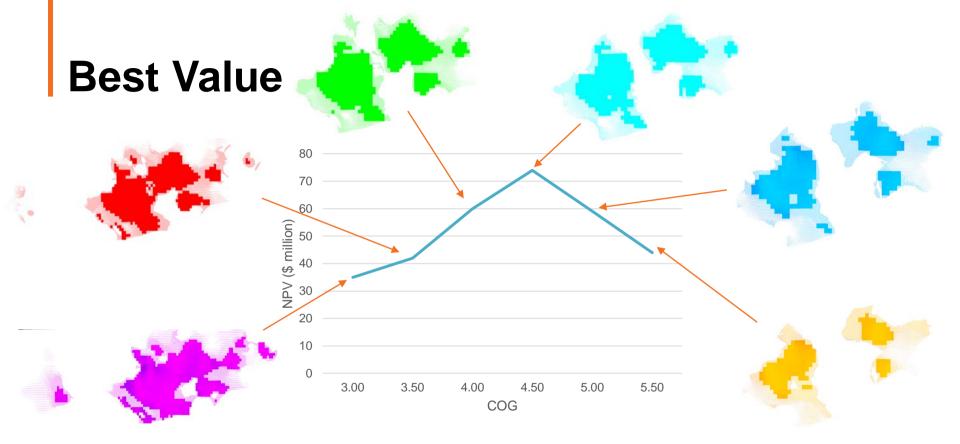
tpd	Vertical Metres	Tonnes	COG
2,400	775	6,901,787	3.00
1,800	750	5,116,866	3.50
1,600	675	3,915,709	4.00
1,400	625	3,140,989	4.50
1,000	550	2,095,061	5.00
800	475	1,396,578	5.50

Downstream Cost = 5.0 gpt

<u>COG 5.0 gpt</u> Total Tonnes = 2.0M Average Grade = 6.03 g/t Production Rate = 1000 tpd



COG	Tonnes	Vertical Metres	tpd
3.00	6,901,787	775	2,400
3.50	5,116,866	750	1,800
4.00	3,915,709	675	1,600
4.50	3,140,989	625	1,400
5.00	2,095,061	550	1,000
5.50	1,396,578	475	800


Profit Margin = 5.5 gpt

<u>COG 5.5 gpt</u> Total Tonnes = 1.4MAverage Grade = 6.44 g/tProduction Rate = 800 tpd

tpd	Vertical Metres	Tonnes	COG
2,400	775	6,901,787	3.00
1,800	750	5,116,866	3.50
1,600	675	3,915,709	4.00
1,400	625	3,140,989	4.50
1,000	550	2,095,061	5.00
800	475	1,396,578	5.50

What COG should I Use?

What to do?

Industry Best Practice...

Same as any evaluation?

- Open pit vs Underground? Mining Megood

What Cyleff Grade to use?

Step 1 – Define your COG Objective

Tonnes/Metal

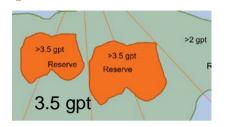
Mineable Deposit size
Long Mine Life
High Ounces
Production Profile Consistent

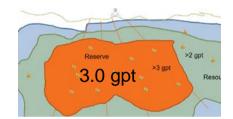
=

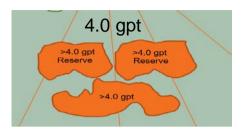
Continuity of Deposit
Maximize Mine Life
High Cashflow up front
Short term Cash flow
Consistent Mill Feed
Robustness to operating cost
Robust to changing gold prices

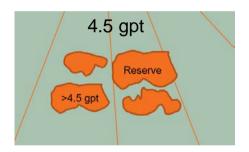
Value (\$)

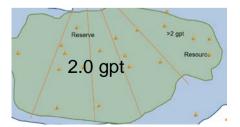
Maximize NPV Maximize IRR Short Payback

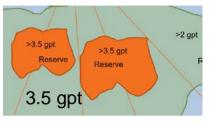

Step 2 – Generate a Base case BCOG

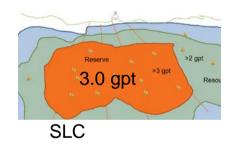

Au Value (1g per tonne)					
Description	Unit	Value	Total		
Spot Price	\$/g	\$40/g	\$40.00/t		
Payable	99%	\$0.40/g	\$39.60/t		
Treatment/Refinery	\$1.60	\$1.60/g	38.00/t		
Royalty	2.6%	\$1.00/t	37.00/t		
Transport	\$1/g	\$1.00/t	36.00/t		
Mill Recovery	94.5%	\$2.00/t	34.00/t		

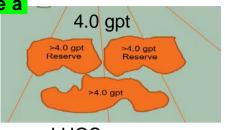

Cost (1 tonne of ore)						
Description	Unit	Total				
Mining	\$/t	\$42.00/t				
Mill	\$/t	\$20.00/t				
Administration(G&A)	\$/t	\$25.00/t				
Sustaining	\$/t	\$15.00/t				
Total Opex + Sustaining	\$/t	\$102.00/t				
COG – Report - Mill Feed (Head Grade)		3.0 (Au gpt)				
Dilution	%	10%				
COG –Insitu- Mine Design)		3.3 (Au gpt)				


Step 3 – Select Range and Increments of COGs

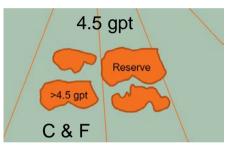

Range: 2.0 gpt to 5.0 gpt Increments of 0.5 gpt

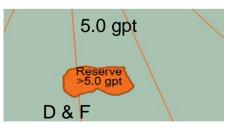


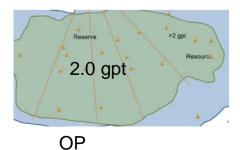


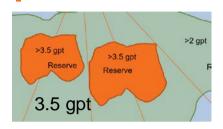


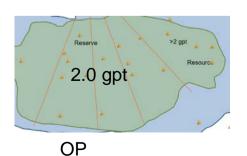
Step 4 – Select Mining Method, Material Handling System and Generate a Mine Plan for Each Scenario



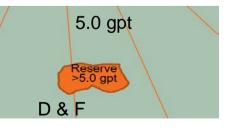

LHOS

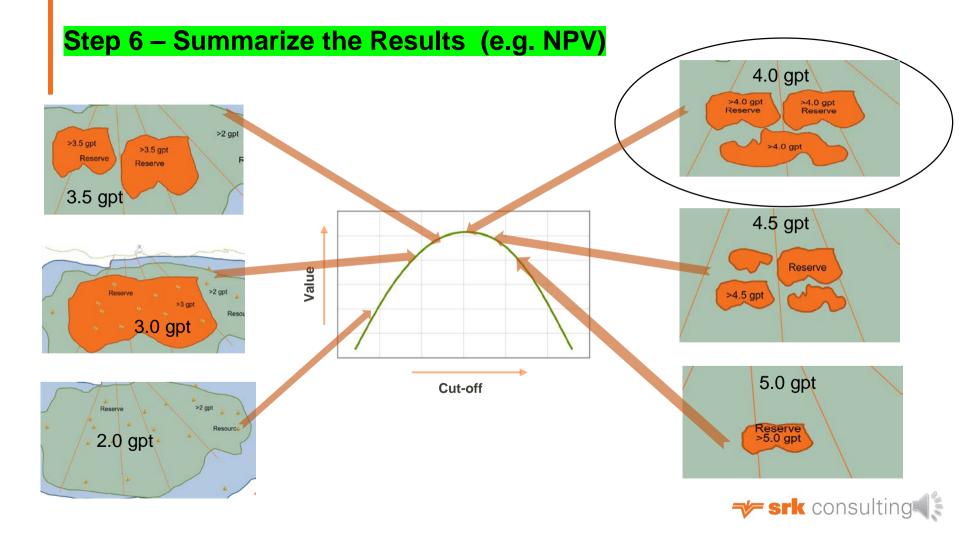



LHOS



Step 5 – Generate a Cashflow Model for each Scenario


LHOS

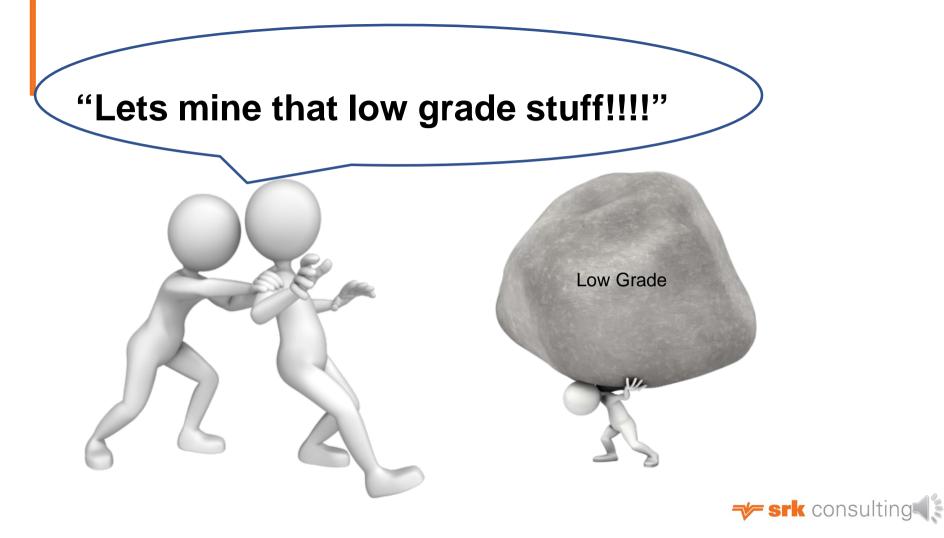


4.0 gpt >4.0 gpt Peserve >4.0 gpt Reserve >4.0 gpt Reserve >4.0 gpt Reserve

4.5 gpt -4.5 gpt -4.5 gpt C & F

Step 7 – Summarize the Objectives and Value

The PUGH Matrix (Decision Strategy Template) is a useful tool to select a COG that produces a mine plan that is best aligned with corporate goals.


DECISION MATRIX			Scenerios	Case 1	Case 2	Case 3	Case 4	Case 5	
	SELECT			Production (tpd)	4,000	3,500	3,000	2,500	2,000
				Mine Method	LH	LH	Narrow LH	Cut and Fill	Cut and Fill
			COG (g/t)	2.0	3.0	3.5	4.0	4.5	
14 a ma #	Item # Weight Parameter Description Ranking Cri		Donking Critoria	SELECT					
item #			Ranking Criteria	14	27	29	27	22	
1	High	Net Present Value (NPV)	Maximized NPV		1	1	1	1	0
2	High	Reserve basis	The mineable orebody size		1	3	2	2	3
3	Medium	Mine life	Maximize Mine Life		0	2	2	1	3
4	High	Au Production	Sustainable and consistent Au Oz production		3	1	1	1	1
5	Low	Short term cash flows	Higher cash flows over the first 3 years.		0	1	2	2	0
6	Low	Mill feed	Achieve consistent mill throughput, with a head grade that does not significantly impact the process recovery.		1	1	1	1	1
6 High Profit Margin High Profit Margin ensures robustness in the mine design for potential long term profitability			1	1	1	1	1		
7	Medium	Sensitivity to Au price	Impact of variations in Au price on the overall economics (upside and downside).		0	1	2	2	1
8	Low	Sensitivity to Operating Costs	Impact of variations in operating cost (\$/t ore) on the overall economics.		0	2	2	2	1
9	Medium	Sensitivity to Fixed/Variable cost breakdown	Impact of variations in fixed and variable costs breakdown (\$/t ore) on the overall economics.		2	3	3	0	0

📌 srk consulting

Step 8 – Select the Best COG Value

DECISION MATRIX			Scenerios	Case 1		Case 3	Case 4	Case 5	
				Production (tpd)	4,000	3,500	3,000	2,500	2,000
	SELECT			Mine Method	LH	Ш	Narrow LH	Cut and Fill	Cut and Fill
				COG (g/t)	2.0	3.0	3.5	4.0	4.5
		Deverseter	Description	Doubing Critoria	SELECT				
Item #	m # Weight Parameter Description Ranking Criteri		Ranking Criteria	14	27	29	27	22	
1	High	Net Present Value (NPV)	Maximized NPV		1	1	1	1	0
2 High Reserve basis The mineable orebody size			1	3	2	2	3		
3	Medium	Mine life	Maximize Mine Life		0	2	2	1	3
4	High	Au Production	Sustainable and consistent Au Oz production		3	1	1	1	1
5	Low	Short term cash flows	Higher cash flows over the first 3 years.		0	1	2	2	0
6	Low	Mill feed	Achieve consistent mill throughput, with a head grade that does not significantly impact the process recovery.		1	1	1	1	1
6	High	Profit Margin	High Profit Margin ensures robustness in the mine design for potential long term profitability		1	1	1	1	1
7	Medium	Sensitivity to Au price	Impact of variations in Au price on the overall economics (upside and downside).		0	1	2	2	1
8	Low	Sensitivity to Operating Costs	Impact of variations in operating cost (\$/t ore) on the overall economics.		0	2	2	2	1
9	Medium	Sensitivity to Fixed/Variable cost breakdown	Impact of variations in fixed and variable costs breakdown (\$/t ore) on the overall economics.		2	3	3	0	0

📌 srk consulting

Below Cut-off???

In **<u>Rare</u>** situations it may make sense if...

- Capacity in the Mill.
- Capacity in the Mine.
- Does not displace planned COG Ore.
- Does not de-rail LoM Plan.
- It makes economic sense.
- Be sure there are processes in place for sign-off and approval.

There are circumstances where mineralized material, although below the stated LOM COG, may still be deemed economic.

Incremental Cut–off Grade

Au Value (1g per tonne)						
Description	Unit	Value	Total			
Spot Price	\$/g	\$40/g	\$40.00/t			
Payable	99%	\$0.40/g	\$39.60/t			
Treatment ery	\$1.60	\$1.60/g	38.00/t			
Roy	2.6%	\$1.00/t	37.00/t			
Transport	\$1/g	\$1.00/t	36.00/t			
Mill Reco	94.5%	\$2.00/t	34.00/t			

Cost (1 tonne of ore)						
Description	Unit	Fixed	Var.	Total		
Mining	\$/t	20	20	20.00		
Mill	\$/t	9	9	9.00		
Administration(G&A)	\$/t	8	2	2.00		
Sustaining	\$/t	-	-	-		
Total Opex + Sustaining	\$/t			31.00		
COG – Report - Mill Feed (Head Grade)	gpt			0.90		
Dilution	%			10%		
COG –Insitu- Mine Design)	gµt			1.00		

ICOG = <u>Variable Mining Cost + Variable Processing Cost + Variable G&A Cost</u> Process Recovery x (Metal Price - TCRC Cost - Royalties)

Development Cut-off Grade

Au Value (1g per tonne)						
Description	Unit Value		Total			
Spot Price	\$/g	\$40/g	\$40.00/t			
Payable	99%	\$0.40/g	\$39.60/t			
Treatment	\$1.60	\$1.60/g	38.00/t			
Roy	2.6%	\$1.00/t	37.00/t			
Traisport	\$1/g	\$1.00/t	36.00/t			
Mill Reco	94.5%	\$2.00/t	34.00/t			

Cost (1 tonne of ore)						
Description	Unit	Fixed	Var.	Total		
Mining	\$/t	20	20	-		
Re-Handling	\$/t	-	5	5.00		
Mill	\$/t	9	9	9.00		
Administration(G&A)	\$/t	8	2	2.00		
Sustaining	\$/t	1-/	-	-		
Total Opex + Sustaining	\$/t			16.00		
COG – Report - Mill Feed (Head Grade)	gpt			0.50		

 $MCOG = \frac{Mine \ Rehandling \ Cost + Variable \ Processing \ Cost + Variable \ G\&A \ Cost}{Process \ Recovery \ x \ (Metal \ Price - TCRC \ Cost - Royalties)}$

Summary

- The COG/COV will set the course for your entire operation, choose it wisely.
- Include input parameters in your COG calculation that reflect what you would have in your cashflow model.
- Understand your project/mine corporate objectives.
- Complete a trade-off study on various COG to identify the COG that yields best value.
- Complete a decision matrix or other tool to select the preferred COG.
- Have various COG based on mine areas or zones if relevant.
- Balance value with effort when completing this exercise.
- Use Incremental "ore" in rare circumstances when there is capacity and you manage it well.

About the Author

Gary M Poxleitner, PEng, PMP Practice Leader/Principal Consultant SRK Consulting (Canada) Inc.

Linked in: https://www.linkedin.com/in/gary-poxleitnerp-eng-pmp-a3b36a1/ Gary is involved in leadership within the mining consulting industry. Gary provides technical advice, mine and project reviews, due diligence and audits, cut-off grade analysis, operating cost estimation, mine design and economic and productivity improvement studies, as well as training and mentoring in all aspects of mine orebody extraction in the underground environment. This involves high level concept projects, PEA, PFS, Feasibility, project execution and operational assistance. He assists clients in providing innovative albeit practical solutions to complex problems.

Gary's technical experience covers a wide range of commodities, geographic and mining settings.

Gary is a professional engineer registered in Ontario and a professional project manager, he has previously held positions as Vice Chairman of Camiro, Membership Chair of the CIM Sudbury Branch, and is currently on the Canadian CIM Council and Chair of the CIM Underground Mining Society. Gary has a PEng in Mining Engineering and is a graduate from Laurentian University, Canada (1991).

About the Author

Joe Rowland, MSc Consultant SRK Consulting (Canada) Inc.

Linked in: https://www.linkedin.com/in/josephrowland-68326170/ Joseph is a Mining Consultant with SRK Consulting based out of Sudbury. He recently transferred from SRK's UK office and brings technical expertise in mine planning and scheduling using Deswik software. He assists clients in all aspects of mine design and scheduling ranging from long range strategic planning right the way down to the implementation of short term scheduling solutions to help clients maximize the value of their assets.

